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SABSTRACT

* The physical mechanisms which give rise to conversion gain in SIS quasiparticle mixers are
studied. It is shown that the S-shape tunneling structure at the gap voltage of the I-V curve is
essential in achieving conversion gain. In the development of SIS quasiparticle mixers, a new
approach is used to analyse the embedding network of the mixing experiment. This method as
described in this paper has the advantage over conventional methods that no separate measure-
ments are necessary. In order to obtain a complete picture of the performance of SIS quasipar-
ticle mixers, the photon-assisted tunneling theory used by Tucker to describe quasiparticle mix-
ing is extended here to include pair current contribution. Based on this complete quantum
theory the effects of the Josephson noise on SIS quasiparticle mixing is discussed and an upper I
frequency limit of SIS quasiparticle mixing is estimated.
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I. INTRODUCTION [

Applications such as radioastronomy have stimulated development of low noise receivers for

millimeter and submillimeter wavelength electromagnetic radiation. Superconducting tunnel

junctions have long been considered as possible nonlinear elements for low noise receivers in

this wavelength range. The properties of Josephson effect detectors and mixers have been

investigated by many workers but they have not been actively used as their performance is lim-

ited by intrinsic noise due to down-conversion of high frequency noise by Josephson effects.

Recently attention has focused on making use of the nonlinearity of quasiparticle tunnel junc-

tions for millimeter and submillimeter wave detection and mixing. Some of these devices now

appear competitive for low noise applications. The first type of quasiparticle junction to be used

for detection and mixing experiments was the super-Schottky diode [1-3]. This is a supercon-

ductor - semiconductor tunneling structure. The current-voltage (I-V) curves of these super-

Schottky diodes are essentially the same as those of superconductor-insulator-normal metal

(SIN) tunnel junctions. The Schottky barrier created on the surface of the semiconductor pro-

vides the tunneling barrier. At temperatures less than the superconducting transition tempera-

ture To, *hermionic emission over the barrier can be neglected and the diode current is dom-

oe inated by quasiparticle tunneling. Superconductor-insulator-normal metal SIN junctions could

also be used for quasiparticle devices, but have not been widely explored. Recent device work

is focusing on superconductor-insulating oxide-superconductor SIS (Josephson) tunnel junc-

tions [4-141. Due to the singularity in density of states of quasiparticles in the superconductors

on two sides of the oxide barrier, there is a sudden onset of quasiparticle tunneling current at

bias voltage near the full superconducting gap voltage 2A/e. The quasiparticle tunneling
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current is hence highly nonlinear near the gap voltage. Pair (Josephson) tunneling current pro-

vides another conducting path for SIS junctions. When an SIS device is operated in the quasi-

particle mode, it is biased near the superconducting gap voltage 2A/e. If the junction capaci-

tance is sufficiently large the junction will be shorted at the Josephson frequency and Josephson

effects can be neglected.

The theory of quasiparticle tunneling has been studied extensively. In a recently published

paper, Tucker [4] has given a complete review of those aspects of the photon-assisted quasipar-

ticle tunneling theory which are relevant for detection and mixing. Results of his general quan-

turn mixer theory indicate that, at frequencies where the photon energy exceeds the range of

the dc nonlinearity on the I-V curve on the voltage scale, classical theory breaks down and

photon-assisted tunneling theory must be used to understand device performance. The theory

shows that the response of the quasiparticle tunneling currents to an RF drive at frequency w is

dominated by quantum effects when the voltage range of the nonlinearity of the I-V curve is

less than 'Fw/e. Theoretical analysis of ideal SIN and SIS junctions predicts that at sufficiently

low temperature both of these devices will display quantum effects at millimeter wave and sub-

millimeter wave frequencies. Quasiparticle mixing up to 30 GHz using super-Schottky diodes

operated at 1K has been reported [31. In these experiments, the super-Schottky diodes were

operated in the classical limit with conversion efficiency less than unity. Problems associated

with coupling and parasitic losses have prevented super-Schottky devices from being operated at

higher frequencies at which quantum effects might be seen. In SIS junctions the non-linearity

of the I-V curve is confined to a narrower range of voltage than in SIN juncticns. At tempera-

tures well below the superconducting transition temperature T,, series resistance in SIS junc-

tions is negligible. As a consequence SIS junctions are capable of displaying strong quantum

effects even in the millimeter wave frequency range (5-81. In particular, conversion gain in SIS

mixers operated in the quantum limit was theoretically predicted [91 and was experimentally

observed [61 at 36 GHz with a mixer noise temperature approaching the quantum limited value

of TM Z- Ufk. SIS quasiparticle mixers have been developed very rapidly in the past two years

and have been demonstrated to be attractive devices for low noise detection in millimeter and
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submillimeter wave radiation. A detailed description of the development of SIS devices can be

found in a recent review article [10] by Richards and Shen. During this period of development

new theories and techniques have been evolved in order to understand the physics and perfor-

mance of this device. At temperature well below T,, SIS tunnel junctions have negligible series

resistance. Therefore, as will be shown, there is good reason to expect that SIS quasiparticle

mixers can operate at frequencies approaching the full superconducting gap frequency (which

has a value of 2A/h-800 GHz for Pb). At these high frequencies the Josephson effects will

become significant. In this paper the theory of SIS quasiparticle mixing is extended to include

the effects arising from the pair tunneling currents.

The properties of frequency conversion in nonlinear devices have been analyzed in detail by

many authors [15-201. The small-signal performance of a periodically pumped nonlinear device

is usually described by an admittance matrix whose matrix elements are complicated functions

of the properties of the device and the operating conditions. Quantum effects have been omit-

ted in determining these matrix elements in classical mixer analysis [21-27]. For an SIS mixer

operating in the quantum limit these classical expressions are no longer applicable and photon-

assisted tunneling theory must be used to evaluate the matrix elements. The classical prohibi-

(, tion of conversion gain in resistive mixers is removed. In Section II the analysis of general

nonlinear devices is summarized. The general expression for conversion loss is rewritten in a

compact form which is particularly suitable for computer calculations. In Section III it will be

shown that the S-shape tunneling structure on the I-V curves of SIS junctions is essential for

achieving conversion gain. Since the results of photon-assisted tunneling theory indicates that

there exists a nonlinear quantum susceptive element (41 its contribution to frequency conver-

(, sion cannot be neglected. The role played by this nonlinear quantum susceptive term in the

observed conversion gain [61 will be discussed.

-'- In irder to understand fully the performance of a device in a mixing experiment, a theoreti-

cal calculation in connection with a mixing experiment is desirable. A problem one soon

encounters is the determination of the admittance in the embedding network. The complicated

geometry of waveguide mounting structure makes theoretical evaluation 1281 difficult. Previous



approaches have used admittance measurements on scale models [29] at much lower frequen-

cies than the actual signal frequency, or by reflectometer methods [30] in which reflectivities

are measured in separate measurements. During the course of development of SIS devices, a

new ,:pproach [6,111 was used to determine the admittance of the embedding network. This

method extracts the information about the admittance of the embedding network from the

response of the dc I-V curve to external radiation obtained in the mixing experiment. No

separate measurements are involved. This is clearly an advantage over conventional methods.

An application of this method to computer simulation of an SIS mixing experiment will be

illustrated in Section IV.

The present quantum mixing theory of SIS mixers only includes contributions from quasi-

particle tunneling current, pair tunneling effects having been neglected. This approximation

remains valid as long as the junction capacitance is sufficiently large to short out the junction at

the Josephson frequencies. The I-V curve of small area junctions suitable for mixing at 115

GHz [12] already contained a significant contribution from pair tunneling. At higher frequen-

cies pair tunneling effects can no longer be neglected. In Section V of this paper a complete

quantum mixing theory is presented. The formalism of photon-assisted tunneling theory used

by Tucker to describe quasiparticle mixing is extended to include contributions from pair tun-

neling effects. This theory gives a complete picture of the performance of SIS mixer and is

essential for the future development of SIS devices. Based on this theory the effects of Joseph-

son noise on SIS quasiparticle mixing is discussed in Section VI and an upper frequency limit of

SIS quasiparticle mixers is estimated.

I. GENERALIZED MIXER ANALYSIS

The basic principles of frequency conversion using nonlinear devices have been dealt in

-. depth by many authors [4,15-20]. The results of the analysis are summarized in this section.

The general expression for the conversion loss of any nonlinear device is rewritten in a compact

form which is particularly suitable for computer calculations.
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W. will follow the notations as used in reference (4]. The equivalent circuit for a general

nonlinear mixer can be represented by a Y-mixer model as illustrated in Fig. 1. An applied

local oscillator at frequency w mixes with all side-band frequencies

., - mO + WO, m - 0. 1,±2, (2.1)

to give an output at wo. Each sideband is assumed to be terminated by an admittance Y.

Power is down-converted from the signal frequency ws- w, with a current generator Is and

source admittance Ys - Y, to the intermediate frequency (IF) wjt - wo with a load YL - Yo.

The small-signal current and voltage at various sidebands are interrelated by an admittance

matrix Y.,, (hence called the Y-mixer model),

im I YMM'vm' • (2.2)
m'

The elements of this admittance matrix depend heavily on the nonlinearities of the device, the

impressed local oscillator waveform across the diode, the dc bias and the frequencies of opera-

tion. This small-signal voltage response can be related to the set of current enerators 1m by

I, i, + Y. v . (2.3)

Combining Eqs. (2.2) and (2.3) we have

lm Y ' ew, ' v ,, .4

where the augmented matrix Y'.., is given by

Y'mm' - Ymm' + Y. 5'" (2.5)

i " Inverting this relation we get

v,, ZM, Ir,. (2.6)

where the matrix

The4, c- oYa..4-1.enda

The conversion loss of a mixer is defined as
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Power available at the signal frequency wi,
Power delivered to the load at IF frequency 'io

- s I (2.8)

4GSG 1 7-0 11
2

where Gs and GL represent the real parts of the source and load admittance Ys and YL, respec-

tively. Expression (' 8) is presented as Eq. (7.7) in reference [41. We will proceed to separate

out from (2.8) a conversion loss factor associated with the nonlinear element and an IF

mismatch factor. The matrix element ZO, can be written as

-Cf 10  97.0, -. d , (2.9)

where Cf 10 and det denote the cofactor and determinant of the augmented matrix IIY',..o1. If

we further define det' as the determinant of the augmented matrix Y',, with YL - 0,

det' determinant of I -Y',.,11yL. (2.10)

then Eq. (2.8) can be written as

I Idet12

L 4GSGL ICf 1
2

l Idet' + YL'CfOO12

4GSGL JCft012

GIF ICfOO12  IYIF + YLI 2

Gs ICf1l2  4GIFGL

. L o . 1(2.11)

CI

w here



YF -, det' ,,Gj +jBIF (2.12)
cf00

1 IYIF + YLI2  (2.13)
CIF 4 GIFGL

LO G 1cfo1 (2.14)Gs iCf20  .(1

Here Cf~o and Cf1 o are cofactors of the augmented matrix I 1Y'.,i1 • C1F represents the IF cou-

pling factor at the output with an IF admittance YJF given by Eq. (2.12). Expressions (2.11) to

(2.14) are valid for any N-port nonlinear devices without parasitic losses. These compact forms

are particularly suitable for computer calculations. Expressions (2.11) to (2.14) can be shown

to reduce to the conventional expressions for special cases such as nonlinear resistive diodes([415,16], two-port parametric amplifiers [181 and double-side-band parametric down-converters

[311.

From expressions (2.11) to (2.14) we can see that matched condition is achieved at the out-

put with a load

YL GL+ jBL, (2.15)

with

GL IGIFI and BL - -BIF (2.16)

There are two possible cases. In the first case where

GIF - Re Yf >0, (2.17)

then under matched condition (2.16),

1, (2.18)
CIF

and
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L L o  C 1 FCl?

- I [J.Cr (2.19); "G iCf1o/"

Conversion gain with positive IF conductance is possible when Lo is less than unity. In the

second case where

GIF - ReYf :SO, (2.20)

then under the matched condition (2.16)

1
0 (2.21)

CIF

and

L =Lo• - - -  0. (2.22)

CIF

Infinite gain can be achieved from the negative IF conductance. Note that a negative IF con-

ductance GIF is accompanied by a negative value of Lo.

For mixer analysis, a lot of information can be obtained by examining the value of LO

expressed in Eq. (2.14). A positive value of Lo indicates that GIF is positive and the minimum

conversion loss L under matched condition is LO. Conversion gain is possible whenever Lo has

a value less than unity. On the other hand, a negative value of LO indicates that GIF is nega-

tive. Although unlimited gain (L - 0) is possible in the matched condition, such a bias condi-

tion may not be suitable for mixer operation as it would easily break into oscillation. In the dis-

cussion of conversion gain in the next section, we will assume the device is matched at the out-

put and conversion loss Lo will be calculated.

- III. CONVERSION GAIN IN SIS AND SIN QUASIPARTICLE MIXERS

In this section we will examine the conversion gain in SIS and SIN quasiparticle mixers. We

will first examine the role played by the nonlinear quantum reactance in the power conversion.

We shall see that the contribution from the nonlinear quantum reactance can be relatively
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insignificant and conversion gain can be basically accomplished by the nonlinear conductive

term. We will then show that the S-shape tunneling structures at the gap voltage in SIS and

SIN junctions are essential in achieving conversion gain.

The performance of SIS and SIN quaisparticle mixers are completely characterized by the

complex response function jl(w) [4,34,35]. Closed form expressions for these complex

response functions in quasiparticle tunnel junctions at low temperatures kT << A were

obtained by Werthamer 34] and analyzed by Harris [351. For SIS junctions with identical

superconductors the idealized quasiparticle response function takes the form

0

[Im jI(w)]T-O f (3.1)

GN ' xE(1 ) - K(I )1 : x1<0

GN.2_ [2K(x') - E(x2 ) + 41 OX 5 O 1

[Re j](OIh-o = j+(3.2)[gel( ]T.offG Aex[K(L )- E(-L)]- -L K ( x  + -' 1<x o

-N 2x x2 4

Here K and E are complete elliptic integrals of first and second kind with the parameter m

given by the arguments of the elliptic integrals and x -ffw/2A. GN is the normal state junction

conductance at high voltages. For an SIN junction the idealized quasiparticle response function

is given by

0: X :5 0.5
0

[Im jI )]T-0 (3.3)

GNA (2x)2 - 1 0.5 - x <00

G,"[1-,r - (2x2]0:5 X < 0.5

[Re ji(w)]T.- (3.4)

GN- 0.5_ X <00

In these expressions the imaginary parts of the response functions give the corresponding dc I-
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V characteristics of the junctions. The nonlinear quantum susceptive element arises from the

real part of the response function j1(w) which is related to the imaginary parts of the response

function through the Kramers-Kronig transform [4,34,35]. These response functions are

shown in Figs. 2 and 3.

In order to understand the relative importance of the nonlinear quantum susceptive term

compared with the nonlinear quantum conductive term we will examine the role played by the

nonlinear quantum susceptance in the conversion gain for a particular SIS quasiparticle mixer

[6]. The mixing experiment is carefully analyzed using the 3-port (signal. image and IF) Y-

mixer model and the method described in the next section. The impressed local oscillator

waveform and the source admittance (0.07-j 0.007) 0 -1 are deduced by fitting to the dc I-V

curve under applied local oscillator power. This information is then used in the computer cal-

culation of the 3-port Y-mixer network to simulate the mixing experiment. The local oscillator

voltage is assumed to be purely sinusoidal. In this particular case, the contributions from the

nonlinear conductance Imjl(,w) and the quantum susceptance Rejl(w) are represented by the

real part and imaginary part of the admittance matrix element Gmm. jBmm • respectively. Results

of the calculation are shown in Table 1. The double-side-band (DSB) conversion efficiencies

with the bias point at the first four photon peaks from the gap voltage 2A/e are calculated. The

first column shows the calculated conversion efficiency using the full quantum admittance

matrix elements G.e, +jB..,. In order to examine the role played by the nonlinear quantum

susceptance B..,, the conversion efficiency is recalculated using only the nonlinear conductive

term G.'. The result is shown in the second column. The contribution from the nonlinear

quantum susceptive term is examined by taking the ratio (shown in the third column) of the

conversion efficiency in the first column to that in the second column. We see that except with

a bias point at the first photon peak the contribution from the nonlinear quantum susceptance is

relatively insignificant. In particular, with a bias point at the fourth photon peak at which

conversion gain was observed experimentally, the conversion gain is basically accomplished by

the nonlinear conductive element. The nonlinear quantum susceptive term only contributes

about 2% to the total power output at the IF frequency. Although at the first photon peak the
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calculated conversion efficiency which includes the contribution from the quantum susceptance

is about 3.20 larger, it is pointed out by Feldman (371 that the significance of the quantum sus-

ceptance should not be overemphasized by comparing these calculated values at one bias point.

When the junction is biased near the gap voltage the conversion efficiency is very sensitive to

all the parameters. A thorough exploration of the parameter space in this region indicates that

a large conversion gain can also be obtained from the nonlinear conductive term by slightl-y

changing the bias conditions (371. Another analytical approach is to calculate the conversion

efficiency using the 3-port Y-mixer model in the limit of small a = eV,/b1w, where V, is the

local oscillator voltage at frequency w. The result indicates that in this limit the contribution

from the nonlinear quantum susceptance is relatively insignificant when compared with that

from the nonlinear conductive term [37]. At the same time, the results of computer calcula-

tions (131 show that the favorable conditions for achieving conversion gain mostly occur in this

limit of small a. This shows that the nonlinear conductive term plays a more important role in

achieving conversion gain in SIS quasiparticle mixers.

We will now show how conversion gain can be accomplished by the nonlinear conductive

element through the S-shape tunneling structures at the gap voltage in SIS and SIN junctions.

Since the quantum susceptance is not essential in achieving the conversion gain in S13 quasipar-

ticle mixers its contribution will be neglected in this discussion. Consider a 3-port Y-mixer

model with the limit of zero IF frequency. The local oscillator voltage can be assumed to be

sinusoidal. In this case Eq. (2.14) gives a single sideband (SSB) conversion loss of

LO 2-. 0 (Y,+I0)(y,+I- 7) 3 -5

where

y. - Gs/G 1 1 (3.6)

2GoGo1

'" Goo(G 1 +G- 1) .(3.71

The dependence of LO on y, in Eq. (3.5) is shown in Fig. 4. When n > 1, L' becomes negative
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for y, < n - 1. The IF conductance is negative and unlimited gain is possible. When 17 < 1,

L° is positive for all values of y, and attains its minimum value of

I Glo l+ I /'j-
Lo. -2 (3.8)

Go, vT'

at a value of y, - VT1T [4,15,161. The IF conductance is positive and stable operation is possi-

ble. As 17 approaches 1, LO. approaches to 2Go/Gol, which could be less than 2 if GIo/Go is

less than unity. In classical theory the conductance waveform g(t) as a function of time (and

hence the conductance matrix element) is obtained by taking the derivatives on the I-V curve

and a minimum SSB conversion loss of greater than 2 is predicted. When SIS quasiparticle

mixers are operated in the quantum limit, the conductance waveform g(t) is no longer given by

the derivatives on the I-V curve and photon-assisted tunneling theory- must be used to obtain

the admittance matrix elements. From Eq. (7,21) of reference [4], we have in the limit of zero

IF frequency,

G° J.(a)J"a)' ' dV(V°+ (n +) )

+ . (Vo + n-) , (3.9)

Got - Ja)J( + (a) I*(Vo + (n +n e

Id(VO + n' I • "(3.10)

eV,
Ji(a) is the Bessel function of order n with argument a - --- , where V, is the local oscillator

voltage of frequency w. In quantum theory the matrix element GM,. depends on the points on

the IV curve separated by Ww/e. For convenience we refer to these points as *photon points'.

The transfer matrix element G10 for an IF photon depends on the derivatives of the I-V curve

because in the limit wo - 0, the IF conductance is given by the derivatives on the I.V curve as

in the classical theory. The transfer matrix element Go, for a signal photon depends on the
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conducting chord joining the 'photon points' on the I-V curve. Of course, these terms are

equal for a linear device. For a nonlinear I-V curve arising from a tunneling diode such as the

SIS device shown in Fig. 2 the range of nonlinearity is much smaller than the photon energy on

the voltage scale. In the vicinity of the gap structure at 2W/e, where there is a sudden jump in

tunneling current, the derivatives of the I-V curve at the 'photon points' A and B are much

smaller than the conductance of the chord joining A and B. Hence, under proper bias condi-

tions, G10 can be much smaller than Go1 and conversion gain may be achieved. A similar argu-

ment can be applied to the case of SIN quasiparticle mixers to show that conversion gain is pos-

sible under proper bias conditions near the gap voltage A/e. Due to the absence of a jump in

the tunneling current the conversion gain effect in SIN junctions is expected to be less pro-

/ nounced than in SIS junctions.

Computer simulations on the performance of quasiparticle mixers in SIS and SIN junctions

have been performed. Results of the computer simulations are reported in the recent work by

Shen and Richards 1131. Conversion gain in quasiparticle mixers in SIS and SIN junctions is

predicted over a wide range of experimental parameters.

IV. COMPUTER ANALYSIS OF MIXING EXPERIMENT

A problem that is often encountered at microwave and millimeter wave frequencies is the

determination of the admittances in an embedding network for various devices mounted in

actual circuits such as mixer diodes. A theoretical evaluation [28] of the admittance parameters

of this network is usually very difficult due to the often very complicated geometry of practical

mounting structures. Several methods of dealing with the problem of measuring the elements

of embedding networks have been used. For millimeter wave mixers the usual approach has

been to use admittance measurements made on scale models at much lower frequency than the

actual signal frequency [29]. Although valuable information can be obtained in this way. this

technique is time consuming and tedious and has some inherent difficulties. Structures like

electrical leads which are not negligibly small are very difficult to be taken into account in

large-scale modeling. It is known that the admittance elements in the embedding network is
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very sensitive to the way the junctions are mounted. Hence the measured admittance elements

may not give the correct value of the embedding admittance for different mixing experiments.
:1

Another way to determined the admittances of the embedding network is by reflectometer

method (30]. Its accuracy depends on the directivity of the directional coupler used and also on

the power level of the test signal. Once the embedding admittances are determined the local

oscillator waveform is obtained by solving the circuit equations self-consistently [36].

In the research on SIS quasiparticle mixers, a new approach (6,11,13] has been used to

analyze the experiment. The information of the admittances of the embedding network is

deduced from the dc I-V curve under external radiation in the actual experiment; no separate

measurement is necessary. Hence the admittance elements obtained are those in the embed-

ding network of the actual experiment. This eliminates the problem of representing the actual

experimental circuitry that is faced in theoretical analysis, large scale modeling and

reflectometer measurement. This method is exceptionally simple in the case of the SIS quasi-

particle mixer where the junction capacitance is voltage independent and the series resistance is

negligible. With slight modification this method can be extended to include effects such as vol-

tage dependent junction capacitance and frequency dependent series resistance in the case of

SIN quasiparticle mixers.

The principle behind this method is to extract the informations about the embedding admit-

tances at the local oscillator frequency and its harmonics from the dc current response of the

junction under local oscillator drive. Since the embedding admittance at the various frequen-

cies will affect the local oscillator voltage waveform impressed acrossed the junction, the dc

current response will also depend on the admittance elements in the embedding network. The

impressed local oscillator waveform can be deduced by fitting the theoretical dc I-V curve to the

experimental curve, and the admittance elements of the embedding network can be determined

from the circuit equations. It is convenient to consider the junction capacitance as part of the

embedding admittance.

The mixer analysis is based on the experimental measured I-V curve which is taken to be



16-

the imaginary part of the quasiparticle response function ji. The corresponding real part of the

response function is deduced from the requirement of causality by using the numerical

Kramers-Kronig transform.

Under a local oscillator drive,

VL0(t) - Ve'w, (4.1)

the time dependent quasiparticle tunnel current from photon-assisted tunneling theory [4] is

l(t) = Im W(nw)W((n + m),) (4.2)
xjl(nw + eV°) e'Mt

(
- 2. Imeim '  (4.3)

In Eq. (4.2), the coefficient W(w) is given by the Fourier transform.

The voltage amplitude Vm across the junction are adjusted until the dc current 1 computed

from Eq. (4.2) agrees with the measured dc I-V curves under constant local oscillator power at

all dc bias voltage. The embedding admittances Y. at various frequency ports can then be cal-

culated from the circuit equations,

IP - V1Y' + I (4.5)

.. O- V.Y +I. m * 1 (4.6)

Here I. is the current source amplitude at the local oscillator frequency. Once Vm's are deter-

mined through the fitting to the experimental dc l-V curve, all the ac currents I= can be calcu-

lated from Eqs. (4.1) to (4.4). The embedding admittance Ym can then be determined from

Eqs. (4.5) and (4.6). Note that the ordered pair (V.,l,) is a function of the dc bias V0. A

change in Vo will effectively change the admittance of the junction and hence its voltage and
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current. Consequently, all the Y.'s determined from Eqs. (4.5) and (4.6) have to satisfy these

equations at all dc bias voltages. The whole problem has to be solved in a self-consistent

manner. Note that in this method the embedding admittance and the local oscillator waveform

are both determined through the iterations.

In practical fundamental mixers, attempts are made to prevent power dissipation at bar-

monic sideband frequencies. The 3-port Y-mixer model is often used to analyze the experi-

mental data. This 3-port Y-mixer model is a useful approximation to SIS mixers as the junction

capacitance provides the necessary high admittance termination at harmonic frequencies. Even

in a 3-port model, the conversion loss is a complicated function of the dc bias Vo, local oscilla-

tor drive V1, signal frequency ws, IF frequency WIF, RF source admittance Gs + jBs and IF load

admittance GL + jBL. In analyzing an experimental situation the frequencies of operation "s/

and wF, (WIF<<ws) and the IF load admittance GL + jBL are known. The dc bias voltage Vo is

a measurable quantity. The local oscillator voltage is changed by adjusting the available local

oscillator power which is a measurable quantity. The source admittance Gs + jBs is adjusted by

tuning the stub and plunger which form the microwave coupling cavity, but the values of Gs

and B are still unknown. 'ithin the context of a 3-port Y-mixer model the problem remain-

ing is to determine the local oscillator waveform impressed across the diode and the source

admittance at the local oscillator frequency.

When a 3-port Y-mixer model is used, the computation required to obtain a self-consistent

solution from Eqs. (4.1) to (4.6) is much reduced because it is now sufficient to consider only

the frequencies corresponding to m,-I, 0 and -1. In particular, the local oscillator voltage

waveform impressed across the junction given by Eq. (4.1) reduces to

VLo(t) 2 Vlei"  . (4.7)

Without loss of generality we may choose V, to be real. In this case, the Fourier coefficient

W(nw) expressed in Eq. (4.4) takes the form of J.(a), Bessel function of order n and argu-

ment a - eVl/bw [4). From Eq. (4.2) the dc current at the voltage Vo under a local oscillation

drive of V, cos(wt) is given by,
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10(Vo) - IJ.(a)l.(Vo + n-) (4.8)
C

For each bias point VD, V, is varied until the dc current calculated from Eq. (4.8) agrees with

the measured dc current at the bias voltage V0. In this way the local oscillator voltage

waveform at all bias point can be determined. To determine the local oscillator source admit-

tance as seen by the diode, let us consider the equivalent circuit at the local oscillator frequency

wi as shown in Fig. 5. IP is the current amplitude of the local oscillator drive and Gs + jBs

represents the source admittance referred to the reference plane of the junction. The junction

capacitance (being voltage independent in the case SIS junctions) is considered as part of the

source admittance. From (4.2) the component of the tunneling current at the local oscillator

(frequuncy w is given by
eVo

liei t = Im J3 (a)J.+1 (a)j(nw0 + - )e"'t  (4.9)

The amplitude of the current source is

Ip - V(Gs +jBs) + I,. (4 10)

The available power from the local oscillator is

= lIII 2

I {(VIGs + Rell) 2 + (VIBS + Iml1 ) 2} . (4.11)
8Gs

Equation (4.11) can be rearranged to give the equation of a circle:

(Gs - 1o)2 + (Bs - yo) 2 - r2  (4.12)

with radius

r (4P, Rell 12 fRel, 1213

and centered at

..-
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4Pin Re(4
V1

2 " , (4.14)

Y0 V 1  (4.15)

Hence the source conductance Gs and susceptance Bs are constrained to lie on a circle centered

at (xo, Yo) with a radius r given by Eq. (4.13), (4.14) and (4.15). The values of x0 , yo and r not

only depend on PLO explicitly, but also on the dc bias Vo implicitly through V, and 11. Different

pairs of values of PLO and Vo will then give different circular loci. For one dc bias point Va,

such a circle C1 is obtained as illustrated in Fig. 6. By repeating the process for other points Vo

on the I-V curve, and/or with different local oscillator power a number of circles such as C2 and

* C3 in Fig. 6 can be drawn. Within the validity of the 3-port model, all these circles should

intersect at a point (Gs,Bs) which is the conductance and susceptance of the current source as

seen by the junction. In this way the source admittance and the impressed local oscillator

waveform at all dc bias voltage Vo under constant local oscillator power can be determined.

Once the embedding admittance and the impressed local oscillator waveform are determined,

conversion loss and other properties of the mixer can be calculated in a manner similar to clas-

sical mixer analysis [17,201 except that classical expressions have to be replaced by quantum

expressions where appropriate. Figure 7 shows an experimental I-V curve for an SIS junction

with the corresponding theoretical curve computed using the local oscillator waveform and

source admittance determined in this way in a 3-port model. Agreement is excellent, consider-

ing that higher harmonics have not been considered.

When the circular loci of the source admittance fail badly to intersect at one point, this is an

indication of inadequacy of the 3-port model. The 5-port Y-mixer model which includes the

first harmonics of the local oscillator frequency can then be used. In this case, we have to con-

* sider a local oscillator voltage of the form

Vw(t) - Vlea' t + Vze i 2'. (4.16)

Here V, can be chosen to be real but V2 in general is complex. The coefficient W(nj) given by
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Eq. (4.4) no longer takes a simple form of a Bessel function but can still be easily evaluated on

a computer by taking the product of three Bessel series. Due to the phase dependence in V2,

W(nw) is complex and takes the form,

W(nw) (-J .- J(4 ) J(M

+i(-I)k j_ 2 .4k+ 2(a)J,()J2k-n (0')3 (4.17)

where

a CV- , 0 V and eIMV 2  (4.18)

71W 211w ZEW

V2 may be determined through a second order fitting to the measured dc I-V curvC Once V,

and V2 are determined the current at the harmonic frequency 2w can be calculated from

eV 0  
i ..

12ei2wt = Im 2: W(nw)W*((n+2)w)jl (nw + -) e (4.19)

The admittance G2 + jB2 at the harmonic frequency 2w may be determined from the circuit

equation,

V2(G 2 + jB2) + 12 = 0 (4.20)

in a self-consistent scheme. It may be found useful to get the first order solution from a 3-port

model and use the solution to start the iteration in the 5-port model until self-consistency is

reached. In the analysis of SIS quasiparticle mixer reported in Ref. [61 where the 3-port model

serves to be a good approximation to the experimental situation, fast convergence in iteration

in the 5-port model is achieved by this method. Self-consistency is reached with less than a

hundred iterations.

V. PHOTON ASSISTED QUASIPARTICLE AND PAIR TUNNELING IN SIS MIXERS

The present quantum theory of SIS mixers proposed by Tucker only includes contributions

from quasiparticle tunneling current. In order to get a complete picture of the performance of

SIS mixers at high frequencies, it is necessary to include the effects of the pair tunneling
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current in the theory of SIS mixers. The approach used by Tucker in his work on photon-

assisted tunneling theory for quasiparticle mixing is here extended to include the effects of pair

tunneling in SIS junctions. The admittance matrix elements are computed including both the

quasiparticle and pair contributions. Once these admittance matrix elements are computed, the

conversion loss and mixer noise temperature can be evaluated as before. The mathematical

computation involved is tedious but straightforward and only the results are presented here.

We start with the transfer Hamiltonian

HT =. TqCkCq + 2TkqC'Ck, (5.1)
kq kq

proposed by Cohen, Falicov and Phillips [381. Tk4 represents the tunneling matrix element

connecting state k on the left-hand side of the insulator with state q on the right-hand side, and

Ck and Cq are one-electron operators on the left- and right-hand sides of the junction. The nor-

mal electron operators are related to the quasiparticle operators by the Bogoliubov transforma-

tion,

"+q uqCqt - vqC.q , (5.2)

L

-. uqC.qJ + vqCqj. (5.3)

Following the approach used by Tucker, the total tunneling current density I(t) as a function of

time under external bias,

V(t) - Vo + VL(t), (5.4)

can be calculated. Introducing the Fourier transform,

exp ie j f'dt' VLO(t'j fdQ W(w) e-i', (5.5)
Jf

the time dependent tunneling current isU
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l(t) Im f dwdw' W(w)W(w'(' + eV)

ifI

2eV
o

dwdw'W(w)W(w') e I564-ffdw W )Wc)•xj 2(w + -) (5.6)

Equation (5.6) was first obtained by Werthamer 134]. The quantities j, and j2 are complex

quasiparticle and pair response functions as defined in the work by Werthamer [34] and Ham.,

[35]. The first term in Eq. (5.6) represents quasiparticle contributions and is used by Tucker in

his analysis of quasiparticle mixing. The second term in Eq. (5.6) represents pair contributions.

From the small signal response, we can identify the admittance matrix element

YMM" - YMM'SP + Ymm' pir (5.7)

which has been separated into terms involving quasiparticle contributions and pair contribu-

tions. The quasiparticle contribution is

Re(Ymmqp) I m f dw f dw' WLO(w)Wo(wj')

X e {(o-'-- m + "+i') i(w - wm" + -)

+ eVo

+ 5( w- w' + j=- w') J(w + eVO )

j,('W +j jJ (5.8)

I
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Im(Y..,O) - Re f dw f dw' WL(w)W(w 1 j)

C L 1  w)[.

+ CVO f

6(w-w' + W.~-W.) jlw+ eV0 )

-j(-w~+ CVO.)] (5.9)

The pair contribution is

Re(3 ~~,)- m £ dw f dw' W~o()W~o(w'

6('+ ~ +2eV 0  V

(W+W,-W + j., ) jh' 2 (wJ + WeV0

+ e'j 2 (w - W,,~ + 0 } 5.0

U~
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Im(Y..' pai) =Re f dw f dw'WLD(w)WL0(w'

2eVo eVo.__ x + W-W + W, + T ) ej2(- + I.. + T )0

1
+ ei j2(. + )V0

+ + + 2eVo + eV0 .

+ e' 2(w - W. + (5.11)

Once the admittance matrix elements are computed the mixer conversion loss can be calculated

as in Eq. (2.11). The minimum detectable power can be evaluated as in reference [4). Follow-

ing Tucker's notation the noise current arising from shot noise under local oscillator drive

within a bandwidth B can be calculated to be

Io]o - B 2: Xo. Xo=m, H=.,, (5.12)
M.M

°

where

adtcrt x i ZZ, (5.13)

and the current correlation matrix is

r
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Himm, C f f dwd'W(w)W'(w') 6(w-' - wa + w,, - w)

X oth K(eVo + 'w' + "'w.,) Iqp VO + +
C 

2

+ coth (CVo + IV Vo +

+ C f f dwd'wV(w)W~') 6 1 + - + 2eV0

X coth [ e2 o+.evo +' W )' 1 ir(Vo + - )

+ e f f dwdw^W(w,)W(w') 6 5 ,,+W + 2eV 0

X oh CO+"f'- I' 0+(5.14)

Here A - e/kT and L,(V) - Imjl(eV/b') and Im1 ,(V) - Imei'j 2(eVih) denote the quasiparticle

and pair contributions to the dc I-V curve. The minimum detectable power is then given by

Eq. k7.17) in reference [41 as

Pd[- 4GslXo0  ll [Io] . (5.15)

Although the quantum mixing theory presented here gives a complete description of the

performance of SIS mixer its application is unfortunately not a trivial matter. This is due to

several factors. The major problem is to determine the impressed local oscillator waveform

VLo(t) and hence W1Q(w). As the Josephson current is vety sensitive to the ac admittance seen

by the junction [391, the local oscillator waveform depends critically on the embedding admit-

tance which appears across the junction. This includes admittances which exist in the external

circuitry as well as the admittances corresponding to the resonance mode developed internally
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inside the junction [40]. This situation is similar to the problems faced in Josephson devices

[39,41]. In point-contact Josephson devices the problem is simplified by assuming the

resistance-shunted-junction model. In the case of SIS mixers, a microscopic model is available

" _- but this adds complexity in solving the problem. The effects of pair tunneling on the dc I-V

curves of SIS junctions have been treated by McDonald, Johnson and Harris [42]. In their

work, the Fourier coefficient W(,) is solved by iteration until self-consistency is reached. This

method can be extended to calculate the conversion loss and noise of SIS mixers as once the

Fourier coefficient W(w) is obtained the admittance matrix element can be calculated from Eqs.

(5.8) to (5.11). From W({), V (t) and 1(t) can be calculated from Eq. (5.5) and (5.6).

When VtO(t) and I(t) are expanded into their Fourier components I., and V., these must

satisfy the circuit equation
I + V • Y -- I, (5.16)

I",, + V,. ,, , ,' , ,(5.17)

where Ip is the source current amplitude at the local oscillator frequency w, and Y,, is the

embedding admittance at frequency ,'. Since Eqs. (5.5), (5.6), (5.16) and (5.17) have to be

satisfied at all frequencies and at all dc bias voltages, the problem has to be solved self-

consistently.

The method discussed in Section IV may be used to determine the local oscillator waveform

by treating the embedding admittances as variable parameters in fitting to the experimental dc

I-V curves. Alternatively, with a knowledge of the admittances in the embedding network.

conventional self-consistent methods [17,36] used in classical mixer analysis can be employed

to determined the local oscillator waveform with classical expressions replaced by quantum

expressions where appropriate.

VI. PERFORMANCE LIMIT OF SIS MIXERS

When an SIS junction is under constant dc current bias, a 'drop-back' voltage exists at

which the dc I-V curve switches hysteretically to zero voltage [6.12,14,431. This phenomena
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can be understood by the fact that in practical situations the finite junction capacitance is not

capable of shorting out the low frequency Josephson currents generated at low voltages. As a

result, pair contributions to the dc I-V curve becomes more and more significant at low vol-

tages. A negative resistance region will then develop on the dc I-V curve which will hystereti-

cally switch to zero voltage when the junction is biased with a constant dc current source. For

the same reason, in the operation of SIS quasiparticle mixers Josephson noise will become

significant when the local oscillator voltage swing is so large that the instantaneous bias voltage

is driven below the drop-back voltage. The junction capacitance is then no longer large enough

to short out these low frequency Josephson currents. This explanation is consistent with the

empirical results observed in the recent report on mixing using SIS arrays [14].

Extended negative-resistance region on the I-V curves of very small area SIS tunnel junc-

tions has been observed by Buckner, Chen and Langenberg [44]. This type of I-V characteris-

tics has been analyzed by using the resistance-shunted model with a capacitive load [39,45]. A

more exact analysis of the effects of junction capacitance on the dc I-V curves of SIS tunnel

junctions using weak-coupling superconductivity tunneling theory can be found in the work by

McDonald, Johnson and Harris [42]. All these experimental and theoretical results indicate

that an extended negative resistance region will develop on the I-V curves of small capacitance

SIS tunnel junctions. Hence, under a constant dc current bias the junction will hysteretically

switch to zero voltage. Another important empirical fact which has been observed [14,43] is

that the drop-back voltage is found to be proportional to the Josephson plasma frequency vol-

tage. In this section, the theoretical formalism presented in Section V is used to obtain an esti-

mation of the value of the drop-back voltage. An approximate expression for the drop-back

voltage is obtain which is proportional to the Josephson plasma frequency voltage as experi-

mentally observed.

We consider an SIS junction under constant dc current bias and assume that at all ac fre-

quencies the junction is terminated by its own capacitance. The voltage across the junction will

consist of a dc component V. as well as Fourier components at the harmonics of the Josephson

frequency
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2eV o2e- - (6.1)

For voltages V0 above the drop-back voltage the Josephson frequency will be high. An analytic

first order solution can then be solved self-consistently. In this voltage region we may approxi-

mate the time dependent voltage across the junction to be

V(t) - Vo + V, cos Wjt, (6.2)

and assume that all the high harmonics of the Josephson frequency are being shorted out by

the junction capacitance. The condition for Eq. (6.2) to be valid is
'I

V--1 _ E<lI. (6.3)V0

The value of i will be determined later by comparing with experimental results. We shall

determine the value of V, self-consistently through the circuit equation,

Iqp(t) + l1ir(t) + C dV(t) - 1o, (6.4)dt

where lqp(t) denotes the quasiparticle current, l*,(t) denotes the pair current, C is the junction

capacitance and 1o is the external dc bias current. Condition (6.3) will then be used to give an

estimation of the drop-back voltage.

From Eq. (5.6), we have

L~()=Im 2 ; J'(z) Jn+m(z) j,(n-i )j

xe (6.5)

I*X(t) Im J'(z) J-,i-I(z) ei 'j2((n+-) J)

X eiJ. (6.6)
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where

eV,
j - (6.7)

From Eq. (6.3) we have

S-- << (6.8)z 2Vo

To the first order of z and for Vo < 2.Ve, we may write Eqs. (6.5) and (6.6) as

lqp(t) - Re j, jj - Re ji, j sin ,,wjt

+ 3- m Ii Wj cos ,.,jt , (6.9)

Ilsi,(t) -z - 12 j2 sin a

- Re j2 Wjj] cos 0 sin wajt

+ Re j 2 wj sin 0 cos wjt . (6.10)

We have used the fact that Imj w - 0 and Imj 2  Wj -0 for V0 < 2A/e. Note that

Re j2 (M) is negative [351.

Substituting Eqs. (6.9) and (6.10) into Eq. (6.4) we get the following equations for dc.

* sin wjt and cos wjt components:

-+ [e2 1 Wij sinG-Io, (6.11)



o 30 -

z , Re - Re j wj -Re j2 Wj cos 0

- C V = 0 ,(6.12)

zImji Ij +Re j2I j sin9 -0 . (6.13)

We see from Eq. (6.13) that sin 6 - z and cos 0 - 1. From Eq. (6.12) we have

Rej 2(-Lwj)

2eV(6.14)

Equation (6.14) gives

- Rj2() I 2 ()
Rej 2( I 2eC

Rej2 (±wJ)

- . (6.15)

where

- (6Tg)

is the plasma fr equeny voltage and ,t C e2(0) Trhe voltage limit governing the inequalit: in
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(6.3) may be used to give an estimation of the value of the drop-back voltage Vd. Substituting

V/V d -, e at V0 - Vd in Eq. (6.15) we have

• F
dReja() Vp. (6.17)

At temperatures well below T,, it was found experimentally that Vd/V Z C" 3 (141. A
h

value of V&/Vi = 3.5 can be attributed to the junction (2-1RNC/ 2 40) used in reference [6].

Based on this empirical fact, a value of e = 0.1 will be used in Eq. (6.17) to obtain a general

expression for the drop-back voltage. The solution of the drop-back voltage Vd as a function of

plasma frequency voltage V. and RNC time constant is shown in Fig. 8. For Vo > Vd. from

Eq. (6.1 1), 1o increases roughly as z- /V 4 as Vo is decreased. This gentle negative resis-

tance region may often be masked by leakage currents in real junctions. For V0 < Vd, Joseph-

son contribution becomes more and more significant and the negative resistance region

becomes more pronounced. Under constant current bias an SIS junction will hysteretically

switch to zero voltage at a voltage equal to the drop-back voltage Vd. For some voltage region

near the gap voltage 2./e, conditions (6.3) and (6.15) will not be satisfied because of the pres-

ence of the Riedel singularity at Rej 2(2A,/). In this voltage region the I-V curve will be

rounded by the pair contribution.

Equation (6.17) may be used to give an upper frequency limit at which SIS mixers can be

operated without the strong influence of the Josephson effects. As the instantaneous bias point

of SIS mixers should not be driven by the local oscillator below Vd, the upper frequency limit

can be defined as the frequency w at which the first photon peak falls midway between the

drop-back voltage and the gap voltage. The junction can then be operated at the first photon

peak and with the instantaneous bias point being driven by the local oscillator into the non-

linear region of the I-V curve without suffering from the Josephson noise. As the first photon
S

peak appears at half of lrw/e from the gap voltage we have

Io - 2. - eV d .(6.18)
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Solutions of Eq. (6.18) are shown in Fig. 9. The upper frequency limit will depend on the RNC

time constant of the junction, where RN is the normal resistance of the junction at high vol-

tages. For a junction with an infinitely large capacitance the drop-back voltage is zero and Eq.

(6.18) gives an upper frequency limit of 24/h. For a given RNC time constant Fig. 9 can be

used to give the highest operational frequency of the junction. A more practical way to look at

Eq. (6.18) is that it gives the highest operational frequency and the corresponding RNC time

constant of the junction for a given wCRN product for effective RF coupling. For W.CRN - 1,

Eq. (6.18) gives ffol/2A - 0.14 which corresponds to an upper frequency limit of -100 GHz

for Pb junctions (2A/h - 800 GHz). These theoretical predictions agree well with the empiri-

cal results reported in reference [14]. Higher operating frequencies are possible with a higher

wCRN product. For wCRN - 5, the upper frequency limit is increased to tw/2A - 0.40

(corresponding to - 300 GHz for Pb.

In the operation of SIS quasiparticle mixers it appears to be beneficial to operate with a large

RNC time constant (,CRN > 1). This has two major advantages. A large R,.C time constant

will reduce harmonic conversion in SIS quasiparticle mixing near the gap voltage and improve

the conversion efficiency of fundamental mixing [6,10,14]. At the same time, large RNC time

constant will have a smaller drop-back voltage and hence a higher operational frequency. This

condition of large wCRN product is contradictory to the apparent requirement that the RNC pro-

duct has to be minimized for effective RF power coupling. This requirement is necessary in

devices such as Schottky and super-Schottky diodes in which the presence of series resistance

Rs has limited the operation frequency w to less than approximately i/CV/ -Rs, where R'. is

the input impedance of the junction at the RF frequency. This is due to the fact that the junc-

tion capacitance has to be charged and discharged through the series resistance each local oscil-

lator cycle. At temperature well below T©, series resistance is negligible in SIS junctions. The

presence of junction capacitance would not then impose such a serious problem on effective RF

power coupling. In principle the junction capacitance can always be resonated out by external

microwave circuitry, although in reality circuit losses impose practical limits to the degree to

which this can be achieved. In the quasiparticle mixing experiment at 36 GHz in which
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conversion pin is reported [61, an operating condition of wCRN - 2 is used. Computer simu-

lations on the mixing experiments have indicated that the junction capacitance is effectively

resonated out by the matching network. The tradeoff in using junctions with large WCRN pro-

duct is that it leads to a small bandwidth and to practical difficulties in realizing the tuning and

matching circuits. In this respect it seems that the upper frequency limit of SIS quasiparticle

mixers is governed by the practical limit of the largest WCR.N product acceptable for effective

RF power coupling.

In order to examine the significance of the harmonic contents of the Josephson frequency, a

similar analysis has been performed by including the harmonic content

V2 cos 2WJt + V sin 2wjt in Eq. (6.2) and a set of equations similar to Eqs. (6.11) to (6.13) is

obtained. For each pair of values of RNC and the corresponding Vd given by Eq. (6.17) (see

, Fig. 8), the values of V, and V are calculated. It is found that in all cases IVziV 1 1 < 0.025

and IVj/V1 l < 0.017. Hence it is well justified in ignoring the harmonic contents of the

Josephson frequency in Eq. (6.2). In Eq. (6.17) the value of e - 0.1 is used in arriving at the

solutions presented in Figs. ! and 9. This value is obtained by comparing Eq. (6.17) with the

experimental results that Vd/Vp, = 3 to 3.5 for junctions with 2.IR.,qC/'E = 40. Whether the

same value of e should be used throughout the entire range of R%.C remains a question. At

values of 2ARNC/ff 5 10 the observed drop-back voltage seems to be much lower than that

predicte' this model [371.

VII. CONCLUSION

Due to the strong nonlinearity on the I-V curve of SIS junctions, SIS quasiparticle mixers

can be operated in the quantum limit in which the classical prohibition of conversion gain in

resistive mixing is removed. Under proper bias conditions, stable mixing with conversion gain

is possible. By using the 3-pot Y-mixer model it is demonstrated that the S-shape tunneling

structure at the gap voltage of the I-V curve of SIS junctions is essential in achieving conver-

sion gain. The role played by the nonlinear quantum susceptance in frequency conversion is

discussed. It is found that the nonlinear quantum susceptance is not essential for achieving
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conversion gain. In analyzing a mixing experiment the determination of the impressed local

oscillator waveform and the embedding admittance has remained a difficult problem. A new

method is introduced in the analysis of SIS mixing experiments. The impressed local oscillator

waveform and the embedding admittance are deduced from the dc I-V curve measured at vari-

ous local oscillator power levels. In order to take into account the effects of pair tunneling in

SIS mixers, the photon-assisted quasiparticle tunneling theory proposed by Tucker is extended

to include the pair tunneling contribution. The admittance matrix element, which includes

both the quasiparticle and pair contributions, is calculated. This is essential to give a complete

picture of the performance of SIS mixers. An explanation of the experimentally observed

drop-back voltage is suggested. An expression for the drop-back voltage is obtained by using

the complete quasiparticle and pair tunneling theory. The upper frequency limit at which SIS

quasiparticle mixers can operate without the strong influence of the Josephson noise is calcu-

lated. This upper frequency limit depends on the largest wACRN product acceptable for effective

RF coupling. If a sufficiently effective RF matching network can be designed it is very likely

that low noise and stable mixing with conversion gain can be achieved by SIS quasiparticle

mixers over the whole millimeterwave band to -300 GHz. An absolute upper frequency limit

for SIS quasiparticle mixers would be the superconducting gap frequency at which supercon-

ducting pair breaking begins.
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Table 1: 3-port Y-mixer calculation of the conversion efficiency expected for the SIS mixing

experiment reported in reference [6]. Double sideband (DSB) conversion

efficiencies are calculated at the first four photon peaks from the gap voltage.

.- Conversion efficiencies L-1 in column one are calculated by using the full quantum

- admittance matrix elements. Conversion efficiencies L'- in column two are calcu-

lated by using only the quantum conductive terms. Contributions from the non-

linear quantum susceptive terms are examined by taken the ratio L'/L - which is

shown in column three. Experimentally conversion gain was observed at the fourth

photon peak.

Bias point L- I  L'' L- 1/L''

ist photon peak 5.40 1.69 3.20

2nd photon peak 2.30 1.75 1.31

3rd photon peak 1.64 1.53 1.07

4th photon peak 1.33 1.31 1.02

t



FIGURE CAPTIONS

Fig. 1 Y-mixer equivalent circuit.

Fig. 2 Quasiparticle response function of ideal SIS junction with identical superconductors

at T-0. The I-V curve of the junction is given by the imaginary part of the

response function. The 'photon points' on the I-V curve are represented by A and

B.

Fig. 3 Quasiparticle response function of ideal SIN junction at T-0.

Fig. 4 SSB conversion loss Lo (in unit of GIO/Gol) of resistive mixers as a function of

( source conductance Gs (in unit of Gil) with 17 as parameter as calculated from the

3-port Y-mixer model. The situation for n<1 is illustrated by the case 17-0.9 and

the situation for n>l is illustrated by 711i'1. For r.<l, minimum conversion loss

occurs at the source conductance of Gs/G 1 - V-'. As ii approaches to 1, the

minimum conversion loss approaches to the value of 2GIo/G 01 with optimal source

conductance Gs/Gll approaches to zero. Gain (SSB L0<2) is possible for

Go/Go,<l. For 7 > 1, negative IF conductance (corresponds to L0<0) occurs for

Gs/Gll < 1-1. Stable mixing with gain is possible for values of Gs/Gll 17-1.

(0.1 to 0.45 in our example of 17-1.1).

Fig. 5 Network analysis of SIS mixer showing equivalent circuit at the local oscillator fre-

quency. The junction is represented by the nonlinear resistive element. Junction

/" capacitance is considered as part of the source admittance.

Fig. 6 Graphical method in determining the source admittance of the embedding network.

In this (Gs,Bs) phase diagram, different circles C1 ,C2 and C3 correspond to different

values of Vo and/or PLO. Within the validity of the 3-port model, all the circles

should intersect at one point which is the source admittance.
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Fig. 7 Experimental I-V curve of a typical SIS junction used in mixing experiments (a)

without and (b) with local oscillator power. Dotted curve (c) is a theoretical curve

calculated with a source admittance of 0.07-jO.007 (1-' determined by the method

discussed using a 3-port model.

Fig. 8 Drop-back voltage Vd as a function of plasma frequency voltage Vp and RNC time

constant. The set of solutions of Vd which occurs beyond the maximum

(minimum) of VP(RC) corresponds to the rounding of the corner of the F-V

curve near the gap voltage 2A./e.

Fig. 9 Upper frequency limit of SIS quasiparticle mixing governed by the onset of the

Josephson effects at the first and second photon peaks (measured froin the gap vol-

tage 2A/e) with a local oscillator drive which just reaches into the nonlinear region

of the I-V curve at the gap voltage. The dash lines represent the positions of the

lowest voltage reached by the instantaneous bias point which should remain above

the drop-back voltage. For a given acceptable operating condition of WCRN product

the maximum operating frequency is given by the intersecting point at which the

dash line of the first photon peak crosses the wCRN contour. These curves can also

be used to find the maximum operation frequency possible for a given junction

(RNC time constant), or the minimum RNC time constant required for a given

operation frequency.
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